◆ Calculus (Stewart) (21 MB, 1381 p.)
◆ Calculus (Spivak) (44 MB, 684 p.)
◆ Multivariable Calculus (Feldman, Rechnitzer, Yeager) (5,7 MB, 813 p.)
◆ Multivariable Calculus with Analytic Geometry (Edwards & Penney) (73,1 MB, 568 p.): 00. Introduction , 10. Polar Coordinates and Plane Curves , 11. Infinite Series , 12. Vectors, Curves, and Surfaces in Space , 13. Partial Differentiation , 14. Multiple Integrals , 15. Vector Calculus , Appendix.
◆ Calculus (Larson) (40 MB, 1334 p.): 00. Preparation, 01. Limits and Their Properties, 02. Differentiation, 03. Aplications of Differentiation, 04. Integration, 05. Logarithmic, Exponential, and Other Transcendental Functions, 06. Differential Equations, 07. Applications of Integration, 08. Integration Techniques, L’Hopital’s Rule, and Improper Integrals, 09. Infinite Series, 10. Conics, Parametric Equations, and Polar Coordinates, 11. Vectors and Geometry of Space, 12. Vector-Valued Functions, 13. Functions of Several Variables, 14. Multiple Integration, 15. Vector Analysis, 16. Appendix.
◆ Calculus (Keisler) (26 MB, 992 p.)
◆ Calculus, Early Transcendentals (25 MB, 1318 p.)
◆ Cálculo Vectorial (6,7 MB. 370 p.): 00. Introductión, 01. Curvas y superficies, 02. Funciones vectoriales, 03. Funciones escalares, 04. Gradiente, 05. Optimización, 06. Integrales dobles, 07. Integrales dobles: regiones generales, 08. Área de superficies e integrales triples, 09. Cambio de variables en integrales triples, 10. Campos vectoriales e integral de línea, 11. Cálculo vectorial, 12. Integral de superficie, 13. Teorema de Stokes y teorema de Gauss, 14. Apéndices, 15. Soluciones.
◆ Calculus with Analytic Geometry (Swokowski) (78,5 MB. 1009 p.): 1. Prerequisite of Calculus, 2. Limits and Continuity of Functions, 3. The Definite Integral, 4. Applications of the Derivatives, 5. The Definite Integral, 6. Applications of the Definite Integral, 7. Exponential and Logarithmic Functions, 8. Other Transcendental Functions, 9. Additional Techniques and Applications of Integration, 10. Indeterminate Forms, Improper Integrals, and Taylor’s Formula, 11. Infinite Series, 12. Topics in Analytic Geometry, 13. Plane Curves and Polar Coordinates, 14. Vectors and Analytic Geometry, 15. Vector-Valued Functions, 16. Partial Differentiation, 17. Multiple Integrals, 18. Topics in Vector Calculus, 19. Differential Equations, 20. Appendices.
◆ Advanced Calculus Problem Solver (47 MB. 8567 p.)
◆ Calculus_ Problems and Solutions (Ginzburg) (19,4 MB. 415 p.)
◆ Higher-Engineering-Mathematics (Bird) (15,9 MB. 745 p.)
◆ A First Course in the Calculus of Variations (3 MB. 311 p.)
◆ Mathematical Methods for Physics and Engineering (9,4 MB. 1363 p.)
◆ Applied Engineering Analysis – Tai-Ran Hsu (26,3 MB. 672 p.): 00. Introduction, 01. Overview of Engineering Analysis, 02. Mathematical Modeling, 03. Vectors and Vector Calculus, 04. Linear Algebra and Matrices, 05. Overview of Fourier Series, 06. Introduction to Laplace Transform and Applications, 07. Application of First-Order Differential Equations in Engineering Analysis, 08. Application of Second-Order Differential Equations in Mechanical Vibration Analysis, 09. Application of Partial Differential Equations in Mechanical Engineering Analysis, 10. Numerical Solution Methods for Engineering Analysis, 11. Introduction to Finite-Element Analysis, 12. Statistics for Engineering Analysis, 13. Appendix.
◆ Vector Calculus for Engineers (Chasnov) (1,16 MB. 240 p.)
◆ Whitman Mathematics (34,1 MB.): Single-variable-calculus-early-transcendentals, Single-variable-calculus-late-transcendentals, Multivariable-calculus-early-transcendentals, Multivariable-calculus-late-transcendentals.
◆ Demidovich, Problems (15,3 MB. 495 p.): 01. Introduction to Analysis, 02. Differentiation of Functions, 03. The Extrema of a Function and the Geometric Applications of a Derivative, 04. Indefinite Integrals, 05. Definite Integrals, 06. Functions of Several Variables, 07. Multiple and Line Integrals, 08. Series, 09. Differential Equations, 10. Approximate Calculations, 11. Appendix.
◆ The Calculus with Analytic Geometry (167 MB. 1120 p.): 01. Real Numbers, 02. Limits and Continuity, 03. The Derivative, 04. Limits, Continuity, 05. Additional Applications of the Derivative, 06. The Differential and Antidifferentiation, 07. Definite Integral, 08. Applications of the Definite Integral, 09. Logarithmic and Exponential Functions, 10. Trigonometric Functions, 11. Techniques of Integration, 12. Hyperbolic Functions, 13. Polar Coordinates, 14. The Conic Sections, 15. Indeterminate Forms, Improper Integrals, and Taylor’s Formula, 16. Infinite Series, 17. Vectors in the Plane and Parametric Equations, 18. Vectors in Three-Dimensional Space and Solid Analytic Geometry, 19. Differential Calculus of Functions of Several Variables, 20. Directional Derivatives, Gradients, Applications of Partial Derivatives, and line Integrals, 21. Multiple Integration, 22. Appendix.
◆ Calculus (Adams) (56 MB. 1116 p.): 00. Preliminaries, 01. Limits and Continuity, 02. Differentiation, 03. Transcendental Functions, 04. Some Applications of Derivatives, 05. Integration, 06. Techniques of Integration, 07. Applications of Integration, 08. Conics, Parametric Curves, and Polar Curves, 09. Sequences, Series, and Power Series, 10. Vectors and Coordinates Geometry, 11. Vector Functions and Curves, 12. Partial Differentiation, 13. Applications of Partial Derivatives, 14. Multiple Integration, 15. Vector Fields, 16. Vector Calculus, 17. Appendix.
◆ Vector-Calculus (Marsden&Tromba) (96 MB. 710 p.): 1. The Geometry of Euclidean Space, 2. Differentiation, 3. High-Order Derivatives, 4. Vector-Valued Functions, 5. Double and Triple Integrals, 6. The Change of Variable Formula, 7. Integrals Over Paths and Surfaces, 8. The Integral Theorems, 9. Appendices.
◆ Advanced Engineering Mathematics – 5th Edition (94 MB. 1023 p.): 1. Ordinary Differential Equations, 2. Vectors, Matrices, and Vector Calculus, 3. Systemes of Differential Equations, 4. Partial Differential Equations, 5. Complex Analysis, 6. Appendices.
◆ Advanced Engineering Mathematics – 10th Edition (21,4 MB. 1283 p.): 1. Ordinary Differential Equations, 2. Linear Algebra, Vector Calculus, 3. Fourier Analysis, 4. Complex Analysis, 5. Numeric Analysis, 6. Optimization, Graphs, 7. Probability, Statistics, 8. Appendix.
◆ Advanced_engineering_mathematics_-_Stroud_K_A___Booth_D.J (52 MB. 1057 p.): 00. Introduction, 01. Numerical Solutions of Equations and Interpolation, 02. Laplace Transforms 1, 03. Laplace Transforms 2, 04. Laplace Transforms 3, 05. Z Transforms, 06. Fourier Series, 07. Introduction to the Fourier Transforms, 08. Power Series of Ordinary Differential Equations, 09. Numerical Solutions of Ordinary Differential Equations, 10. Partial Differentiation, 11. Partial Differential Equations, 12. Matrix Algebra, 13. Numerical Solutions of Partial Differential Equations, 14. Multiple Integration 1, 15. Multiple Integration 2, 16. Integral Functions, 17. Vector Analysis 1, 18. Vector Analysis 2, 19. Vector Analysis 3, 20. Complex Analysis 1, 21. Complex Analysis 2, 22. Complex Analysis 3, 23. Optimization and Linear Programming, 24. Appendix.
◆ Calculus-GEMS-Brief-Lives-and-Memorable-Mathematics (33,7 MB. 370 p.)
◆ Analiză reală, Paul Georgescu (52,3 MB. 580 p.): Calcul diferenţial, Calcul integral.
◆ Probleme de analiză (Procopiuc & Ispas) (0,9 MB. 198 p.)
◆ Algebră liniară şi geometrie analitică (Pletea) (2,15 MB): Matrice.-Determinanti.-Sisteme-liniare, Spatii-liniare, Spatii-euclidiene, Transformari-liniare, Valori-si-vectori-proprii, Forme-patratice, Geometrie-analitica-in-plan, Geometrie-analitica-in-spatiu, Geometrie-analitica.-Repere-in-plan-si-in-spatiu, Cuadrice-pe-ecuatii-reduse.
◆ Calcul integral (Pletea): 1. Primitive, 2. Integrală definită, 3. Integrale improprii, 4. Integrale curbilinii, 5. Integrală dublă, 6. serii Fourier, 7. Transformata Laplace, 8. Ecuaţii diferenţiale integrabile prin cuadraturi, 9. Ecuaţii diferenţiale liniare de ordin n cu coeficienţi constanţi.
◆ Engineering-Mechanics-(Irving Shames) (37,8 MB. 1100 p.)
◆ Bazele mecanicii aplicate (Manafi) (66 MB. 545 p.): 1. Introducere, 2. Statica, 3. Cinematica, 4. Dinamica punctului material, 5. Dinamica solidului rigid, 6. Mecanică analitică.
◆ An Excursion through Elementary Mathematics: 1. Real Numbers and Functions (8,6 MB. 657 p.), 2. Euclidean Geometry (20,1 MB. 550 p.), 3. Discrete Mathematics and Polynomial Algebra (6 MB. 647 p.).
◆ Probleme de algebră, geometrie analitică şi ecuaţii diferenţiale (Udrişte) (56 MB. 326 p.): 1. Algebră liniară şi geometrie analitică, 2. Geometrie analitică în E3, 3. Geometrie diferenţială, 4. Ecuaţii diferenţiale.
◆ Algebră, Geometrie analitică şi diferenţială (Stoica&Neagu) (1,43 MB, 284 p.)
◆ Probleme geometrie analitică (Mihaela Sterpu) (0,3 MB, 110 p.)
◆ Multiple Integrals (5,82 MB, 160 p.)
◆ An-Introduction-to-the-Geometry-of-the-Triangle-and-the-Circle (32 MB, 334 p.)
◆ Compendiu de matematică (Beju) (38 MB, 565 p.)
◆ Mechanical Engineer’s Handbook: Statics, Dynamics, Mechanics of Materials, Theory-of-Mechanisms, Machine-Components, Theory of Vibration, Principles-of-Heat-Transfer, Fluid Dynamics,
Control, Appendix
◆ Caius Iacob – Matematică aplicată şi mecanică
◆ Mathematical Mechanic – Using Physical Reasoning to Solve Problems (5,5 MB. 197 p.)
◆ Viktor Prasolov – Problems in Plane and Solid Geometry
◆ Mecanică teoretică – teste grilă
◆ Ptolemy’s Sine Lemma
◆ Encyclopedia of Mathematics
◆ Introduction to Triangle Geometry
◆ Teorema Sylvester (0,5 MB. 27 p.)
◆ Calculus and Analytic Geometry (Addison&Wesley) (151 MB. 1281 p.): 00. Preliminaries, 01. Limits and Continuity, 02. Derivatives, 03. Applications of Derivatives, 04.Integration, 05. Applications of Integrals, 06. Transcendental Functions, 07. Techniques of Integration, 08. Infinite Series, 09. Conic Sections, Parametrized Curves, and Polar Coordinates, 10. Vectors and Analytic Geometry in Space, 11. Vector-Valued Functions and Motion in Space, 12. Multivariable Functions and Partial Derivatives, 13. Multiple Integrals, 14. Integration in Vector Fields, 15. Appendices.
◆ Essential Calculus Skills (97 MB. 528 p.): 01. Derivative of Polynomials, 02. The Chain Rule, Product Rule and Quotient Rule, 03. Derivative of Trigonometric Functions, 04. Derivatives of Exponentials, 05. Derivatives of Logarithms, 06. Second Derivatives, 07. Extreme Values, 08. Limits and L’Hôpital’s Rule, 09. Integrals of Polynomials, 10. Definite Integrals, 11. Integrals of Trigonometric Functions, 12. Integrals of Exponentials and Logarithms, 13. Integration by Polynomial Substitution, 14. Integration by Trigonometric Substitution, 15. Integration by Parts, 16. Multiple Integrals
◆ Higher Engineering Mathematics (186 MB. 1327 p.): 00. Introduction, 01. Solutions of Equations, 02. Linear Algebra, 03. Vector Algebra and Solid Geometry, 04. Differential Calculus, 05. Partial Differentiation, 06. Integral Calculus, 07. Multiple Integrals, 08. Vector Calculus, 09. Infinite Series, 10. Fourier Series, 11. Differential Equations of First Order, 12. Applications of Differential Equations, 13. Linear Differential Equations, 14. Applications of Linear Differential Equations, 15. Differential Equations of Other Types, 16. Series Solutions of Differential Equations, 17. Partial Differential Equations, 18. Applications of Partial Differential Equations, 19. Complex Numbers and Functions, 20. Calculus of Complex Functions, 21. Laplace Transforms, 22. Fourier Transforms, 23. Z Transforms, 24. Empirical Laws, 25. Statistical Methods, 26. Probability and Distribution, 27. Sampling and Inference, 28. Numerical Solutions of Equations, 29. Finite Differences and Interpolations, 30. Numerical Differentiation, 31. Difference Equations, 32. Numerical Solutions of OED, 33. Numerical Solutions of Partial OED, 34. Linear Programming, 35. Calculus of Variations, 36. Integral Equations, 37. Discrete Mathematics, 38. Tensor Analysis, 39. Useful Information, 40. Tables, 41. Answers to Problems, 42. Index.
◆ Calculus (OpenStax): Vol. 1 (39 MB. 873 p.), Vol. 2 (35 MB. 829 p.), Vol. 3 (62 MB. 1023 p.).
◆ Challenging Mathematical Problems (Yaglom): 1. Combinatorial Analysis and Probability Theory, 2. Problems form Various Branches of Mathematics.
◆ Problems Solving Strategies (Arthur Engel) (61 MB. 415 p.)
◆ Astronomy (OpenStax) (153 MB. 1206 p.): Vol. 1, Vol. 2.
◆ Physics for Scientists and Engineers (87 MB.)
1.Newtons-Laws, 2.Conservation-Laws, 3.Applications-of-Newtonian-Mechanics, 4.Thermodynamics, 5.Waves-and-Optics, 6.Electricity-and-Magnetism, 7.Relativity-and-Quantum-Physics.
◆ Fundamentals of Physics [10th Edition] – Halliday & Resnick: TextBook (Vol. 1, Vol. 2), Solutions (Vol. 1, Vol. 2)
◆ Fizică pentru cursul superior al liceului (162 MB. 563 p.): 00. Introducere, 01. Elemente de mecanică, 02. Câmpul gravitaţional, 03. Oscilaţii şi unde mecanice, 04. Elemente de teoria căldurii, 05. Sarcina şi câmpul electric, 06. Purtători de sarcină în mişcare şi câmpul magnetic, 07. Oscilaţii şi unde electromagnetice, 08. Echivalenţa dintre masă şi energie, 09. Dualismul undă-corpuscul, 10. Dezvoltarea concepţiei despre atom, 11. Procese nucleare.
◆ Classical Mechanics (6,48 MB. 82 p.)
◆ Lectures on Classical Mechanics (0,6 MB. 80 p.)
◆ Classical Mechanics, a Critical Introduction (4,9 MB. 364 p.)
◆ Classical Mechanics (Tai Chow) (9,61 MB. 631 p.)
◆ Arya – Classical Mechanics (32,5 MB. 718 p.): 01. Introduction to Newtonian Mechanics, 02. Particle Dynamics in One Dimension, 03. Harmonic Oscillators, 04. Oscillating Systems, 05. Vector Analsys, Vector Operators, and Transformations, 06. Motion in Two and Three Dimensions, 07. Central Force, 08. System of Particles: Conservation Laws and Collisions, 09. Rigid Body Motion: I, 10. Gravitational Force and Potential, 11. Nonlinear Coordinate Systems, 12. Lagrangian and Hamiltonian Dynamics, 13. Rigid Body Motion: II, 14. Theory of Small Oscillations and Coupled Oscillators, 15. Vibrating Strings and Fluids, 16. Special Theory of Relativity, 17. Index
◆ Mecanică, teorie şi aplicaţii (Florin Constantin) (22,7 MB. 488 p.)
◆ Problems and Solutions on Mechanics (17,4 MB. 770 p.)
◆ 1000-Solved-Problems-in-Classical-Physics (Springer) (16 MB. 812 p.)
◆ Culegere-Fizica (Petrescu&Păun) (0,83 MB. 246 p.)
◆ Mecanică teoretică (Octavian) (5 MB. 344 p.)
◆ Gabriela Cone, Probleme de fizică: Mecanică, termodinamică (38 MB. 170 p.), Mecanică, termică (57 MB. 310 p.), Electrică, optică, nucleară (30 MB. 178 p.).
◆ How to Solve Physics Problems (Oman&Oman) (57 MB. 364 p.)
◆ 3000 Solved Problems in Calculus (Schaum) (21,3 MB. 465 p.)
◆ Vector Analysis (Schaum) (5,3 MB. 234 p.)
◆ 100 Great Problems of Elementary Mathematics (10,9 MB. 402 p.)
◆ 1300 Math Formulas (7,1 MB. 335 p.)
◆ Electromagnetism (Petrescu) (9 MB.): 01. Istoria electromagnetismului, 02. Regim electrostatic, 03. Regim electrocinetic, 04. Legea transformărilor energetice în procesulde conducţie, 05. Regim magnetostatic, 06. Legi şi relaţii generale în electromagnetism (1), 07. Legi şi relaţii generale în electromagnetism (2), 08. Energia electromagnetică şi forţele exercitate în câmp electromagnetic (1), 09. Energia electromagnetică şi forţele exercitate în câmp electromagnetic (2), 10. Teoria circuitelor electrice, 11. Condensatorul, 12. Circuite în curent continuu, 13. Teoremele generatoarelor echivalente.
◆ Probleme de fizică – Evrika, Mihai Sandu (101 MB. 299 p.): Mecanică, Termodinamică.
◆ Fisica.net: Mechanics and Thermodynamics, Statics and Dynamics, Newtonian Physics, Electromagnetics, General Relativity and Cosmology, Geometrical Optics, Great Physicists, Optics, Radiation Physics, Basic Ideas and Concepts in Nuclear Physics, 1000 Problemas resolvidos.
◆ Probleme rezolvate de electricitate (107 MB. 210 p.): 1. Electrostatică, 2. Curentul electric, 3. Curentul continuu, 4. Curentul alternativ, 5. Fenomene tranzitorii, 6. Elemente neliniare de circuit, 7. Electromagnetism, 8. Ecuaţiile Maxwell.
◆ Marea Istorie ilustrată a lumii: 1. Preistorie, 2. Antichitatea, 3. Evul Mediu, 4. Începutul epocii moderne, 5. Epoca modernă, 6. Marile războaie, 7. Epoca contemporană.
◆ Encyclopedia of Russian History (39,7 MB. 1930 p.)
◆ Pauls Online Math Notes
◆ Math Insight
◆ Anchordoqui Physics
◆ OpenStax
◆ Mathematics LibreTexts
◆ Manuale şcolare preuniversitare
◆ Fişiere încărcate la MathWiki